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S5. In the gauge theory, the open string is described by a spin chain with boundaries. We
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corresponding to two possible relative orientations for the charges of the giant graviton and

the open string. Using the symmetries of the problem we compute the boundary reflection

matrix up to a phase. These matrices obey the boundary Yang Baxter equation. A crossing

equation is derived for the overall phase. We perform weak coupling computations up to

two loops and obtain results that are consistent with integrability. Finally, we determine

the phase factor at strong coupling using classical solutions.
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1. Introduction

Recently there has been a great deal of progress in understanding planar N = 4 super

Yang Mills, see [1 – 7] and references therein. Planar Yang Mills theories give rise to a two

dimensional theory which can be viewed as the worldsheet of a string. From the gauge

theory point of view, single trace operators give rise to a closed spin chain, which in turn

is related to a two dimensional field theory on a circle. When the charges of the state

under consideration are very large one can view the gauge fixed closed string theory [8] as

living on a large circle. The limit where the string is infinite is particularly simple [9, 10]

and one can solve exactly this problem [1 – 3, 11]. By “solving” we mean finding the

fundamental excitations, their dispersion relation, and their scattering amplitudes on the

infinite string for all values of the ’t Hooft coupling. It is very useful to consider the

symmetries of the problem, which are larger than naively expected [1]. These symmetries

determine completely the matrix structure of the two particle scattering matrix [1, 12].

The remaining phase can then be determined by using a crossing symmetry equation [2, 3].

In integrable field theories it is often possible to define the system on a half line, with

suitable boundary conditions such that the system remains integrable. A nice example is

the boundary Sine-Gordon theory studied in [13]. In this article we study some physical

problems in N = 4 super Yang Mills that lead to a system with a boundary. From the

string theory point of view we expect to have boundaries when we have D-branes. Then the

open string excitations are described by a two dimensional field theory with a boundary.

Such D-branes can arise in several situations:

• Gauge theories with additional flavors. Open strings correspond to strings with a

quark and an anti-quark at the ends.

• Theories with lower dimensional defects, which in some cases can be realized as D-

branes in the bulk [14].

• Certain large charge operators in N = 4 super Yang mills. For example, operators

of charge N of the form det(Z), where Z is one of the complex scalar fields in the

theory. We will focus on such operators and their excitations in this paper [15, 16].

Another case where integrable systems with boundaries arise is when we consider

operator insertions along a Wilson loop [17]. This is a situation where, despite the absence

of explicit D-branes in the bulk, we end up with a system with a boundary. Of course, we

could say that a Wilson line is a an open string which ends on the boundary of AdS5.

Previous work analyzing open spin chains in N = 4 super Yang Mills or the corre-

sponding open strings with various boundary conditions includes [14, 17 – 33]. We focus,

mainly, on two intimately related cases which consist of giant graviton operators with two

possible orientations relative to the open string ground state. We show that in one case we

have boundary degrees of freedom, while in the other case we do not.

The central idea in this paper is a generalization of the analysis by Beisert [1, 12] to

the case where we have boundaries. Namely, we will use the symmetries of the system to
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determine the matrix structure of the boundary scattering matrix. We then proceed to

write a crossing equation for the phase factor. Although we have not solved the crossing

equation, we have computed the phase factor at weak and strong coupling.

We have also checked that the boundary Yang Baxter equation is obeyed. This follows

by an argument similar to the one used in [12]. Furthermore, we performed calculations

at two loops in the weak coupling expansion and obtained results compatible with integra-

bility. At strong coupling, this system leads to a classically integrable boundary condition

for the string sigma model [28].

When studying the action of the symmetries, it has proven to be useful to have in mind

the physical picture for the extra central charges suggested by the classical string theory

analysis in [34] (see also [12, 35] for a related picture). Although we explicitly discuss the

specific case of giant gravitons, our methods can be extended without too much work to

the various cases listed above.

This article is organized as follows. In section two we discuss the boundaries related to

giant gravitons, both in string theory and in the gauge theory. In section three we derive

the exact reflection matrices up to an overall phase. In section four we study these theories

perturbatively in the weak coupling limit. We obtain the form of the phase factors up to

two loops and we also perform some explicit checks of the exact results. In section five

we carry out an analogous discussion of the strong coupling regime. We conclude with a

discussion of these results in section six. Finally, we include two appendices. In appendix A

we discuss the two loop integrability of the system with a boundary, while in appendix B

we present explicit calculations of wave functions and reflection matrices at weak coupling.

2. Giant gravitons, determinants and boundaries

We study open strings attached to maximal giant gravitons [15] in AdS5 ×S5. These were

previously studied at weak coupling at one loop in [23] and at two loops in [31], while

a strong coupling classical analysis was carried out recently in [28]. Problems with the

integrability of the theory at two loops were pointed out in [31]. We will see, however, that

a non trivial extra term coming from a subtle interaction with the boundary will render

the theory integrable.

2.1 Giant magnons meet giant gravitons

2.1.1 Giant gravitons

Giant gravitons are D3 branes in AdS5×S5 [15]. These D3 branes wrap topologically trivial

cycles, but are prevented from collapsing by their coupling to the background fields. We

will concentrate on the so called “maximal giant gravitons” which are D3 branes wrapping

a maximum size S3 inside S5. We can introduce coordinates for the S5 in terms of W =

Φ1 + iΦ2, Y = Φ3 + iΦ4 and Z = Φ5 + iΦ6, with |Z|2 + |W |2 + |Y |2 = 1. Maximal giant

gravitons are given by a pair of independent linear equations aIΦI = bIΦI = 0, and are all

equivalent up to an SO(6) rotation of the sphere. These configurations preserve half of the
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supercharges. The particular half that they preserve depends on their orientation inside

the S5.

We are interested in studying open string excitations on the giant gravitons. Our

methods work best when the open string carries a large amount of charge. Thus, we also

want to single out a special generator, J = J56, of SO(6) which generates rotations in the

56 plane. We consider open strings with large charge J . In the field theory such states

will involve a large number of insertions of the field Z. Since we are breaking the SO(6)

symmetry by selecting a particular generator, J , we find that the explicit open string

description depends on the orientation of the giantgraviton inside S5.

We will consider two cases where the D3 brane wraps the following three spheres

• The three sphere given by Z = 0. We will call this the Z = 0 giant graviton brane.

We choose its orientation so that it preserves the same supersymmetries as the field

Z in the field theory.

• The three sphere given by Y = 0, which we call the Y = 0 giant graviton brane.

This brane preserves half of the supersymmetries preserved by the field Z in the field

theory.

2.1.2 Giant magnons hitting giant gravitons

In what follows we will study open strings with a large amount of charge J . The centrifugal

force pushes most of this string to the circle at |Z| = 1. We choose a light cone gauge so

that a pointlike string moving along this great circle corresponds to the BMN vacuum [9].

In light-cone gauge the string has length J . The ground state of this string preserves

half of the spacetime supersymmetries. In particular, it preserves those supercharges with

∆ − J = 0, where ∆ is the conformal dimension. Furthermore, we can have excitations

with momentum p that move along the string. The lowest energy excitation with a given

momentum is BPS. It corresponds to an elementary magnon on the corresponding gauge

theory spin chain. The state manages to be BPS due to the existence of additional central

charges [1]. A convenient picture for the origin of these central charges is the following [34].

We draw the projection of the configuration on the Z plane. This plane is embedded in

AdS5 × S5 as explained in detail in [36]. The string ground state corresponds to a point

on the rim of the circle. An elementary excitation corresponds to a segment that joins two

points on the rim. The two central charges correspond to string winding charges along this

Z plane [34]. It is now convenient to think about the two branes mentioned above in these

coordinates. The Z = 0 giant graviton brane is simply a point at Z = 0, and it wraps an

S3 inside the S5, see figure 1. The Y = 0 giant graviton brane, on the other hand, covers

the whole disk, see figure 2. At each point of the disk it also wraps an S1 inside the S3

that sits at that point. This circle shrinks at the rim of the disk so that we end up with a

brane with the S3 topology.

In the large J limit the string worldsheet is a very long segment, so that when we

analyze the effects near one of the boundaries we can forget about the existence of the

other boundary and consider the system on a half infinite line. Therefore, we consider first
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Figure 1: Z = 0 brane in the Z plane.
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Figure 2: Y = 0 brane in the Z plane.

the problem of a giant magnon coming from infinity and bouncing off the boundary back

to infinity. In particular, this means that our states interpolate between the usual vacuum

of BMN states [9] and the boundary. Furthermore, this implies that one of the ends of the

string looks like a “heavy” particle - i.e., there is an infinite amount of J charge at this

point - moving at the speed of light in a maximum circle of S5, see figure 3 and [34].

Let us now look at the shape of the corresponding strings on the Z plane. The shape

of this string could be complicated at a random point in worldsheet time, but in the

asymptotic region (worldsheet time t → ±∞) they must look like giant magnons. This

means they connect two points on the rim of the disk. This yields no surprise for the Y = 0

brane: the asymptotic scattering states for the Y = 0 brane are just strings stretched

between points on the rim. This might give the impression that the strings are contained

within the D-brane. This is not necessarily true; there is an additional S3 ⊂ S5 at each

point on the disk and the brane and the string could be separated within this S3.

The Z = 0 brane presents an interesting characteristic. In order for the string to

interpolate between the correct states we are led to the following picture of the asymptotic

scattering configuration, see figure 3 (b). We need to have a string that connects the rim

of the disk to the center where the Z = 0 giant graviton brane sits.

This, in turn, suggests that the Z = 0 brane carries a boundary degree of freedom.

Even when there is not asymptotic excitation we should have the piece of string connecting

the rim of the disk to Z = 0, see figure 3 (c).

A string lying along a segment in the Z plane carries non vanishing central charges

of the worldsheet algebra, since we argued that those central charges correspond to string

winding charges on the Z plane.
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(a) (b) (c) (d)

Figure 3: (a) Large J open string attached to a Z = 0 giant graviton brane. (b) Asymptotic

form of the initial condition for the worldsheet scattering of a magnon off the right boundary. The

dot on the boundary represents an infinite string in the lightcone ground state. (c) The boundary

degree of freedom corresponds to a string going from the brane to the rim of the circle. (d) A string

configuration for sufficiently small J does not get close to the boundary of the circle.

An important comment at this point is that strings with finite J charge never reach

the asymptotic vacuum described above and consequently cannot reach the rim of the Z

plane. These strings are localized around the brane at the center of the circle.

From the picture presented so far, we are lead to a simple guess for the energy of the

boundary state, once we understand the representation of SU(2|2)2 to which it belongs. Let

us assume that it belongs to the smallest BPS representation. We will later substantiate

this statement by a weak coupling computation where we check that this is indeed the

case. Once this is shown for weak coupling, it will be true at all values of the coupling.

This implies that the energy is ǫ =
√

1 + |k|2 where ~k are the two the central charges.

We then notice that the central charge is precisely half the central charge of a magnon

with momentum p = π, which corresponds to a string joining antipodal points on the rim.

Therefore,

ǫB =
√

1 + 4g2 , g2 =
λ

16π2
(2.1)

where λ is the ’t Hooft coupling. Moreover, since the string in figure 3 (c) is sitting at

a point in the S3 ⊂ S5 we have collective coordinates and their quantization is expected

to lead to BPS boundary bound states with higher SU(2|2)2 charges, as we have in the

bulk [37, 38]. These states have energy ǫB(n) =
√

n2 + 4g2.

These statements do not rely on integrability, only on the symmetries of the theory.

Our exact and perturbative calculations presented in the following sections agree precisely

with the results discussed above.

2.2 Determinants in the gauge theory: the weak coupling description

The coordinates chosen in the previous section make it easy to translate this analysis to

the gauge theory side of the story. Here we think of W, Y, Z as the three complex scalars

of N = 4 super Yang Mills (and of course we also have their complex conjugates).

Then the Z = 0 giant graviton brane, which is the maximal giant graviton given by

the equation Z = 0, corresponds to the gauge theory operator det(Z) [16, 39 – 41]. This is

a gauge invariant operator with J = N . Of course, the Y = 0 giant graviton brane is then
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obtained by an SO(6) rotation as the operator det(Y ). Both of these operators correspond

to the maximal giant gravitons on their ground state. We now want to consider giant

gravitons with open strings attached. These are given by replacing one of the entries of the

determinant by a chain similar to the one appearing in single trace operators [23, 24, 40, 42 –

45]. For example, for the Y = 0 giant graviton brane we can write

OY = ǫ
j1j2...jN−1A
i1i2...iN−1B Y i1

j1
Y i2

j2
. . . Y

iN−1

jN−1
(ZZZ . . . ZZZ)B

A (2.2)

where one can make impurities propagate inside the chain of Zs. Thus we consider opera-

tors of the form

OY (χ) = ǫ
j1j2...jN−1A
i1i2...iN−1B Y i1

j1
Y i2

j2
. . . Y

iN−1

jN−1
(. . . ZZZχZZZ . . .)B

A (2.3)

where χ denotes a generic impurity. For the Z = 0 giant graviton brane, an operator of the

form (2.2) with Y replaced by Z would factorize into a determinant and a single trace [24].

This would not describe an open string but a D-brane plus a closed string. Instead we

consider excitations of the form

OZ

(
χ, χ′, χ′′

)
= ǫ

j1j2...jN−1A
i1i2...iN−1B Zi1

j1
Zi2

j2
. . . Z

iN−1

jN−1

(
χZZ . . . ZZZχ′ZZZ . . . ZZχ′′

)B

A
(2.4)

where the impurities χ and χ′′ are stuck at the ends of the Z-string. The impurities will

reflect when they get to the ends of the string of Zs. Of course, in the large J limit, we

only have to worry about one of the ends at a time.

As we mentioned above the two kinds of giant gravitons are related by an SO(6)

transformation. Thus, if we start with the Z = 0 brane and we add Y impurities so as to

completely “fill” the chain we would end up with a state of the form

O′ = ǫ
j1j2...jN−1A
i1i2...iN−1B Zi1

j1
Zi2

j2
. . . Z

iN−1

jN−1
(Y Y Y . . . Y Y Y )B

A (2.5)

which is simply an SO(6) transform of the state O in (2.2).

3. Exact Results for the boundary reflection matrix

Following the work of Beisert [1, 12], it is possible to calculate, up to an overall phase,

the reflection matrix associated with the scattering of impurities from the boundaries dis-

cussed in the previous section. All we need are the symmetries of the theory and the

representations of the states involved. In order to carry out this analysis it is important to

understand well the symmetries of the system. Let us first discuss the symmetries of the

bulk, before we add the boundaries. As explained in [1, 12] we have a centrally extended

SU(2|2)2 algebra. We can consider one of these factors at a time. Each factor has eight

supercharges Qα
a and Sa

α which transform under SU(2) × SU(2) ⊂ SU(2|2). We denote

the generators of SU(2) × SU(2) as Ra
b, Lα

β respectively. We follow the notation of [1].

The algebra contains a generator C = ǫ
2 , where ǫ is the energy of an excitation around the

vacuum built with Zs, ǫ = ∆ − J56. In addition we have two extra bosonic generators k

and k̄ which are the extra central charges which appear in the anti-commutators1

{Qα
a, Q

β
b} = ǫabǫ

αβ k

2
, {Sa

α, Sb
β} = ǫabǫαβ

k∗

2
(3.1)

1In the notation of [1] k

2
= P and k∗

2
= K.
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These imply that the BPS condition reads ǫ2 = 1+kk∗. For the fundamental bulk excitation

we also have a relation between k and the momentum

|k|2 = 16g2 sin2 p

2
(3.2)

The phase of k is a bit more subtle and we will discuss it later.

The fundamental of SU(2|2) can be split in the following way ¾ = B
Â ⊕ F

Â, under

SU(2) × SU(2), where we specified that one doublet is bosonic while the other one is

fermionic, i.e. B
Â = (φ+̇, φ−̇) and F

Â = (ψ+, ψ−). We have added a dot to the bosonic

SU(2) indices to remind us that they transform under a different SU(2) than the fermions.

It is useful to write down the transformation rules for the fundamental multiplet as

Qα
a|φb〉 = aδb

a|ψα〉 , Qα
a|ψβ〉 = bǫαβǫab|φb〉

Sa
α|φb〉 = cǫαβǫab|ψβ〉 , Sa

α|ψβ〉 = dδβ
α|φa〉 (3.3)

where ad − cb = 1. We find that k
2 = ab, k∗

2 = cd and the energy is ǫ = 2C = ad + bc. We

will pick the following parametrization for (a, b, c, d):

a =
√

gη

b =

√
g

η
f

(

1 − x+

x−

)

(3.4)

c =

√
giη

fx+

d =

√
g

iη

(
x+ − x−

)

The momentum of the particle is given by x+

x− = eip. The ad − bc = 1 condition translates

into the mass shell condition

x+ +
1

x+
− x− − 1

x−
=

i

g
(3.5)

The unitarity of the representation demands that

η =
√

ix− − ix+ (3.6)

up to a phase, which we set to one. Unitarity also requires that f is a phase, which

contributes to the phase of the central charge as k = −2gf(eip − 1). We can think about

the central charges in terms of the segment that the magnon describes in the Z plane, by

stretching from z1 to z2,

z2 − z1 = f(eip − 1) = − k

2g
(3.7)

Then the phase f represents the orientation of that segment, see figure 4. This orientation

depends on the sum of the momenta of the magnons that are to the left of the magnon

under consideration.2 Thus f is given by the angle that the magnon is making in a given

2This corresponds to the non-local parametrization of the problem, as described in [12]. This can also

be described by forgetting about f and adding markers Z±, see [12] for details.
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(a) (b) (c)

1

f

p

1

f

pp

1
p

=e
i

α

α

Figure 4: (a) We depict a configuration of well separated magnons living on a long string. We

choose the point 1 as a reference point and we want to describe the magnon with momentum p. (b)

f is the point on the unit circle where the magnon starts and gives the angle required to rotate it

to the reference point 1, as in (c).

state, relative to the magnon with the same momentum that starts at z1 = 1 and goes to

z2 = eip, see figure 4. In the case that we have a semi-infinite string it is convenient to

take the reference point to coincide with the point where this infinite string is located on

the circle.

When we return to the full problem we need to consider two extended SU(2|2) factors

and the representation is the product of the fundamental for each, giving a total of 16

states. For example we get

Y = φ−̇ × φ̃−̇ , W = φ+̇ × φ̃−̇ , W = φ−̇ × φ̃+̇ , Y = φ+̇ × φ̃+̇ (3.8)

where the fields φ±̇ and φ̃±̇ transform under two different SU(2|2) groups. When we

consider two extended SU(2|2) factors we get six central charges. However, in this physical

problem we require that the central charges for the two factors are equal (we set to zero

the difference).

When we consider the Z = 0 giant graviton brane we preserve the full symmetry group.

Physical states with finite J correspond to strings that start and end on the D-brane that

sits at Z = 0 and they thus carry zero total central charges k = k∗ = 0.

On the other hand when we consider the Y = 0 giant graviton brane we only preserve

the subgroup which is also preserved by the field Y . Let us consider the anticommutator

{Qα
a, S

b
β} = δb

aδ
α
β C + δα

β Rb
a + δb

aL
α
β (3.9)

and concentrate on the supercharges with a +̇ index, Qα ≡ Qα
+̇

and Sα ≡ S+̇
α. These

supercharges annihilate an object with J ≡ C + R+̇
+̇

= 0, which is a singlet under the

second SU(2), such as a gauge invariant operator made purely with the field Y (notice

that an upper −̇ index carries R+̇
+̇

= −1
2). These supercharges, together with J and the

– 9 –
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second SU(2) generators form an SU(1|2) subgroup. The (noncompact) U(1) generator,3

J, in SU(1|2), which appears in the right hand side of the supersymmetry algebra, is given

by 2J = ǫ + 2R+̇
+̇

= ∆ − J56 − J34 − J12 for one SU(1|2) factor and it is 2J̃ = ǫ + 2R̃+̇
+̇

=

∆ − J56 − J34 + J12 for the other.

Let us now study each case in detail.

3.1 The Y = 0 giant graviton brane or SU(1|2)2 theory

As we mentioned above, the symmetries that commute with the field Y lead to an SU(1|2)2

subgroup. In order to study the problem we first focus on one SU(1|2) subgroup and

compute the reflection matrix in this case.

The SU(1|2) algebra arises by restricting all the generators of the SU(2|2) algebra to

the ones carrying only +̇ indices. As we mentioned above the (non-compact) U(1) generator

is J = C + R+̇
+̇

and the non-vanishing commutators are

[J, Qα] = −1

2
Qα (3.10)

[J, Sα] =
1

2
Sα (3.11)

[
Lα

β,J γ
]

= δγ
βJ α − 1

2
δα
βJ γ (3.12)

{Qα, Sβ} = Lα
β + δα

β J (3.13)

where J α is any generator with upper index α. Notice that this algebra is not centrally

extended. All central extensions that appeared in the SU(2|2) algebra do not contribute

tot he anticommutators of the surviving supercharges have disappeared. In this case a

finite J physical open string does not necessarily have zero central charges, but the central

charges, k, k∗ are not preserved by the boundary.

We can find the action of this algebra on the states of the fundamental representation

of SU(2|2) from (3.3). For completeness we give the action of all generators

Lα
β |φ±̇〉 = 0 , Lα

β |ψγ〉 = δγ
β |ψα〉 − 1

2
δα
β |ψγ〉 (3.14)

J|φ−̇〉 = bc |φ−̇〉 , J|φ+̇〉 = ad |φ+̇〉 , J|ψα〉 =
1

2
(ad + bc) |ψα〉 (3.15)

Qα|φ−̇〉 = 0 , Qα|φ+̇〉 = a|ψα〉 , Qα|ψβ〉 = bǫαβ |φ−̇〉 (3.16)

Sα|φ−̇〉 = cǫαβ |ψβ〉 , Sα|φ+̇〉 = 0 , Sα|ψβ〉 = dδβ
α|φ+̇〉 (3.17)

with α, β, γ = +,−.

Since the SU(1|2) algebra does not have a central extension, we find that for gen-

eral momentum we have a non-BPS representation since the charge J = ǫ
2 + R+̇

+̇
can

vary continuously. Thus we expect that the fundamental representation of the extended

SU(2|2) transforms irreducibly. In fact, it transforms as the representation of SU(1|2) with

3This factor is really non-compact in our problem, hopefully we can continue to call it a U(1) without

causing confusion.
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the supertableaux ¾¾. This has the right dimensions as ¾¾ = B1 ǫ
2
− 1

2
⊕ B1 ǫ

2
+ 1

2
⊕ F

Â ǫ
2
,

where we have broken the representation in U(1)×SU(2) multiplets and we have indicated

whether we have bosons or fermions. In terms of the degrees of freedom of the SU(1|2)

fundamental representation ¾ = (ϕ, χ±) we can represent the corresponding states as

(χ+χ− − χ−χ+, ϕϕ, ϕχ± + χ±ϕ). We now would like to match these states to the funda-

mental of the extended SU(2|2) algebra. Matching their bosonic charges we see that

¾¾ =








χ+χ− − χ−χ+

ϕϕ

ϕχ− + χ−ϕ

ϕχ+ + χ+ϕ








=








φ−̇

φ+̇

ψ−

ψ+








(3.18)

In the special case of zero momentum p = 0, the representation splits into two, one

is the identity, given just by φ−̇, and the other three states form the fundamental, BPS

representation of SU(1|2) with one bosonic, φ+̇, and two fermionic states. Recall that the

field Y is given by Y = φ−̇ × φ̃−̇, so it is reasonable that for zero momentum it is a singlet

under SU(1|2) since the SU(1|2) subalgebra was found by demanding that all generators

annihilate Y . In this article we are interested in the case with non-zero momentum where

we have a single SU(1|2) non-BPS representation.

3.1.1 The reflection matrix

The SU(1|2) reflection matrix4 R can now be calculated by demanding that [R,J ] = 0 for

all generators J . The vanishing of the commutators of R and the bosonic operators imply

that R must be diagonal with equal entries for the fermionic components. Namely,

R =








r− 0 0 0

0 r+ 0 0

0 0 r 0

0 0 0 r








(3.19)

The commutators with the fermionic operators yield the following conditions:

ar − a′r+ = 0

br− − b′r = 0

cr − c′r− = 0

dr+ − d′r = 0

−→
r− = c

c′ r = b′

b r

r+ = a
a′ r = d′

d r

(3.20)

where the primed variables are the quantum numbers of the state after the reflection. These

are obtained from the original ones by

x± → x′± = −x∓ (3.21)

This follows from conservation of energy, p → −p and holding x+ + 1
x+ − x− − 1

x− = i
g .

Note that η, (3.6), is invariant under (3.21), so η′ = η. The phase f might change as well.

4The full reflection matrix of the theory is just the product of two SU(1|2) reflection matrices.
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(a) (b)

(c) (d)

f f’

f

f’

boundary
Right

boundary
Left

Figure 5: We depict several scattering configurations in a situation where we have a semi-infinite

string. We choose the infinite region (“heavy” particle / BMN vacuum) to lie at the reference point

1 in the complex plane. We can read off the values of the phase f for the initial and final states

from these figures. In (a) and (b) we depict the initial and final configuration for the scattering off

a boundary on the right. We can see that in this case f = f ′ = 1. In (c) and (d) we have the initial

and final configurations for scattering from a boundary on the left. f = e−ip 6= f ′ = e+ip in this

setup. In all cases we located the point that sets the phase for the incoming state, f , and for the

final state, f ′. The arrow goes from left to right on the string worldsheet.

f represents the point where the magnon starts in the Z circle, see figure 4. When we have

a boundary scattering process the values for f for the incoming and the outgoing magnon

are related by the geometry of the scattering process in the Z plane. In other words, it

is determined by the conservation laws. We represent the relevant conservation laws in

figure 5 for the scattering from a right boundary and a left boundary.

We see that in the case that we scatter from a boundary on the right, then f does

not change, f ′ = f . If the orientation is opposite (boundary on the left), f changes to

f ′ = f
(

x+

x−

)2
, see figure 5(c,d). Incidentally, (3.20) requires bc = b′c′ and ad = a′d′.

This follows trivially from conservation of energy ǫ = ad + bc and the mass shell condition

ad − bc = 1. Plugging in the values for the quantum numbers yields

RR = R0R(p)








−e−ip 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1








, for a right boundary (3.22)
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and

RL = R0L(p)








−eip 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1








, for a left boundary. (3.23)

In these expressions x+

x− = eip and R0R(p), R0L(p) are arbitrary phases. We see that the

two results are consistent with the reflection symmetry that we have in the problem. In

fact, if we assume reflection symmetry we can also relate R0L(p) = R0R(−p). In addition,

unitarity requires R0L(−p) = 1/R0L(p), R0R(−p) = 1/R0R(p).

The magnons in the full theory are the product of two fundamental magnons of each

extended SU(2|2) algebra. Similarly, they are the product of representations for each

SU(1|2) subalgebra.

From this result we can predict a ratio of reflection amplitudes. For example the ratio

of the amplitudes of scattering a Y = φ−̇ × φ̃−̇ and a W = φ+̇ × φ̃−̇ is −e∓ip for R, L

boundaries respectively. Remember that in our conventions p is the incoming momentum.

If the boundary is placed on the left this momentum is negative. So left and right results are

consistent. We will compare this result with explicit calculations in the following sections.

Another interesting comment is that this matrix does not contain poles or zeros, unless

they are included explicitly in R0(p). This means that if there is a bound state in one

channel, all channels must have one. In the next section we will check that there is no

bound state at weak coupling. We will also compute R0(p) perturbatively to two loops at

weak coupling and to leading order at strong coupling.

3.1.2 The Yang Baxter equation

We now check that this reflection matrix satisfies the boundary Yang Baxter equation.

This equation is represented graphically in figure 6 and it states that one can compute the

reflection of a pair of particles in two ways. As in the case of the bulk Yang Baxter equation

one can check the equation in a simple way using the symmetries [12]. The idea is to look

at the Hilbert space of two particles and decompose it in representations of SU(1|2) and

then check the equation in each representation. This can be done in a simple way if each

representation contains a state that scatters diagonally, so that all scattering amplitudes

are simply phases. The intermediate representations of the 2 particle incoming states are:

Á Á × Á Á = Á Á Á Á +

Á Á Á

Á +

Á Á

Á Á (3.24)

The first representation on the right hand side of (3.24) contains the state φ+̇
1 φ+̇

2 , the second

contains the states ψ+
1 ψ+

2 and ψ−
1 ψ−

2 and the third one contains φ−̇
1 φ−̇

2 , which are all states

that scatter diagonally.

Let us now check the boundary Yang Baxter equation for two excitations that scatter

diagonally. Let us denote by S(1, 2) their bulk scattering. S(1, 2) is simply a phase by

assumption. Similarly, we have the reflection r(1) and r(2) from the boundary which is

also a phase. Thus we have

S(1, 2)r(1)S(−2, 1)r(2) = r(2)S(−1, 2)r(1)S(−2,−1) (3.25)

– 13 –
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−1
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2

1

=

Figure 6: The content of the Yang Baxter equation is that these two processes give the same

answer.

Since we only have phases we see that r(1) and r(2) drop out from the equation and we

are only left with a requirement involving the bulk S matrix. This requirement is obeyed

if the bulk S matrix is parity invariant, S(1, 2) = S(−2,−1). This is an invariance of the

bulk S matrix, thus we see that the boundary Yang Baxter equation is satisfied. We have

also checked explicitly that the equation is indeed satisfied.

3.1.3 The crossing equation

In order to derive the crossing equation we need to form a singlet state according to the

derivation in [12]. This identity state is

1(p,p̄) = fpe
ip/2(φ+

p φ−
p̄ − φ−

p φ−
p̄ ) + ǫαβψα

p ψβ
p̄ (3.26)

where the subindex p denotes the momentum and energy ǫ(p) of the first particle and the

index p̄ denotes the momentum p̄ = −p and energy ǭ = −ǫ(p) of the second, crossed,

particle. If we think in terms of the fermionic part of the state we can view the state as

a hole, ψ+(p), and negative energy electron ψ−(p̄). In this case, we clearly see that we

get back the original vacuum of the theory. Thus adding this state should have no effect

on the theory. By scattering this two particle state from a third and demanding that the

result is invariant one can obtain the crossing equation [2, 12].

If we start with this state and we scatter it from the right boundary we obtain the state

r(p)1(−p̄,−p), where r(p) is some reflection phase. We see that we do not get the same state

because the particle and antiparticle are in a different order. However, if we have a left

boundary and we now scatter the resulting state we get back to the original state (3.26),

see figure 7. We now use that parity invariance implies that the scattering phase we get

from the second scattering is the same as the one we got from the first boundary. Thus we

find that the total scattering phase is r(p)2. Now it makes sense to demand that the total

scattering phase is one, r(p)2 = 1.

So, we get r(p) = ±1. By considering different boundaries on the two sides we see that

the signs should be all plus or all minus, for all boundaries in the theory. We take this sign

to be plus. We’ll show this in a moment, by looking at the plane wave limit.
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p p
p

−p
−p −p

p

p p

p

p

−p

Figure 7: We scattering the singlet state pp̄ from the right boundary and then from the left

boundary in order to come back to the original situation. We demand that this double scattering

gives one.

When we scatter this state from the boundary we will need the boundary reflection

matrix (3.22) and the bulk S matrix written in [12].

At the end of the day we obtain

1(p,p̄) = hbS0(p,−p̄)R0R(p)R0R(p̄)
[

f−pe
ip/2(φ+

−p̄φ
−
−p − φ−

−p̄φ
−
−p) + ǫαβψα

−p̄ψ
β
−p

]

=

= hbS0(p,−p̄)R0R(p)R0R(p̄)1(−p̄,−p)

hb ≡
1

x− + x−

1
x+ + x+

(3.27)

where S0 is the phase factor as defined by Beisert in [12] and R0 is the phase factor which

multiplies the boundary reflection matrix that we had above. Thus the crossing equation

has the form

R0R(p)R0R(p̄) =
1

hb

1

S0(p,−p̄)
=

1
x+ + x+

1
x− + x−

1

S0(p,−p̄)
(3.28)

This would be the equation in the case that we had only one SU(2|2) factor. In the full

theory, where we have the two SU(2|2) factors we define the full reflection factor to be

simply R2
0R(p), and the bulk phase factor is usually written in terms of a dressing factor

σ2 through the equation [7]

S0(p1, p2)
2 =

(x+
1 − x−

2 )

(x−
1 − x+

2 )

(

1 − 1
x−

1 x+
2

)

(

1 − 1
x+
1 x−

2

)
1

σ2(p1, p2)
(3.29)

Then the equation for the full theory becomes

R2
0R(p)R2

0R(p̄) =
1

h2
b

1

S2
0(p,−p̄)

=
x+ + 1

x+

x− + 1
x−

σ2(p,−p̄) (3.30)

Notice that in the plane wave limit [9] the right hand side of this equation is just 1. In

this limit our theory is non interacting and we know that, in the SU(2) subsector, R2
R(p) =

R2
R(p̄) = −1, as this is just a relativistic theory with Dirichlet boundary conditions. From
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equation (3.22) we see that this implies R2
0R(p) = R2

0R(p̄) = −1. This means that the plus

sign is the correct one for the right hand side of equation (3.30).

Finally, we should also mention that unitarity implies

R0R(p)R0R(−p) = 1 (3.31)

3.2 The Z = 0 giant graviton brane or SU(2|2)2 theory

We now study the case of a Z = 0 giant graviton brane, which preserves the full SU(2|2)

symmetry, see figures 1, 3. The new feature of this case is the existence of a boundary

degree of freedom. We assume that the boundary degree of freedom transforms in the

fundamental representation of extended SU(2|2)2. It seems clear that this is the case at

weak coupling where we have an impurity stuck between the Z-determinant and the string

of Z’s producing the large J open string. Then we expect that this should continue to be

the case at all values of the coupling. Since the supersymmetry algebra has been extended

by the addition of two central charges we need to understand the values of the central

charges for the impurity. Here, we will be guided by the string pictures we discussed

above, where the central charges are associated to the winding number of the string in the

z plane. Thus the central charge vector is simply the vector given by a string going from

the brane at z = 0 to the rim of the disk, see figure 3 (c). We can also view the central

charge vector as a complex number. This fixes the absolute value of the central charge

vector

|k|2 = 4g2 (3.32)

The phase of the central charge depends on the momenta of the other magnons that are

in the problem and changes when a magnon scatters from the boundary. Below we will

explain how it changes. The conclusion is that the representation of the boundary impurity

is again the fundamental of the extended symmetry algebra. The only difference between

the impurity representation and the magnon one is in the relation between the central

charges and the momentum (the impurity does not have a momentum quantum number),

and in the precise dynamics of the phase of the central charge. It turns out that the

problem completely factorizes into each extended SU(2|2) factor. Thus we consider first

the case where we have only one SU(2|2) factor.

Let us start by being more specific about the representation properties of the boundary

degree of freedom. The transformation properties are as in the bulk case, (3.3), but with

the following values of a, b, c, d.

aB =
√

gηB (3.33)

bB =

√
gfB

ηB
(3.34)

cB =

√
giηB

xBfB
(3.35)

dB =

√
gxB

iηB
(3.36)
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B

Bf

−f

(a) (b) (c)

(d) (e)

−1

1

11

−f

R

R

B
L

B
L

Figure 8: In (a) we see a generic open string configuration in the regime that J is very large and the

magnons are very well separated. We have denoted by fBL
and fBR

the corresponding parameters

of left and right boundaries, respectively. In (b) we isolate the piece of string corresponding to the

left boundary impurity. Its phase −fB is the end point of this string. fB is also the phase by which

the configuration was rotated with respect to the reference configuration in (c). In (d) we isolated

the piece of string corresponding to the right boundary. fB is the starting point of the string on

the circle. This phase is also the one by which the configuration was rotated with respect to the

reference configuration in (e). These figures can be viewed as the central charge vectors (except for

a −2g factor) for the states involved and also as the projections of the physical string configurations

to the z plane in the AdS5 × S5 geometry.

where we have added the subindex B to distinguish these from the bulk case. Unitarity of

the representation requires |ηB|2 = −ixB and that fB is just a phase. The shortening/mass

shell condition implies

ad − bc = 1 −→ xB +
1

xB
=

i

g
, xB =

i

2g

(

1 +
√

1 + 4g2
)

(3.37)

where we picked the solution for xB which leads to positive energy

ǫ = ad + bc =
g

i

(

xB − 1

xB

)

=
√

1 + 4g2 (3.38)

The phase fB depends on the other magnons in the problem and can be understood most

simply by looking at figure 8. For a right boundary, fB is the position of the endpoint

of the last magnon on the Z circle. Equivalently it is given by the sum of the momenta

of all magnons to the left of the boundary. Since the system ends at the right boundary,

this means that fB =
∏

j eipjf1 for all the magnons in the system, where f1 is the starting

point of the first magnon.

We now derive the boundary S matrix for this system. We must first understand how

f and fB change under scattering, see figure 9. Let us consider the case of right boundary
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(a) (b)

(c) (d)

f f’

f

f’

B

B

Bf = −f

f’ = −f’
B

Right
boundary

Left
boundary

Figure 9: In (a) we see the initial state for scattering from a right boundary and in (b) we see

the final state. We have indicated the phases of the central charge in both cases. In (c) we see the

initial state for right boundary scattering and in (d) we see the final state. These figures can be

viewed as the central charge vectors (except for a −2g factor) for the states involved and also as

the projections of the physical string configurations to the z plane in the AdS5 × S5 geometry.

scattering. In the initial state we have fB = eipf . In the final state the magnon phase does

not change, f ′ = f and f ′
B = e−ipf = e−2ipfB =

(
x−

x+

)2
fB, see figure 9 a, b. On the other

hand, for a left boundary fB = −f , see figure 9 c, d. In this case f ′ = −f ′
B = e2ipf , or

f ′
B =

(
x+

x−

)2
fB. xB does not change in either case.

Let us now analyze the case with a left boundary in detail. The following equations

summarize the quantum numbers of the incoming particle and the boundary and how they

change after scattering:

a =
√

gη a = a

b =

√
g

η
f

(

1 − x+

x−

)

b′ = −x+

x−
b

c =

√
giη

fx+
c′ = −x−

x+
c (3.39)

d =

√
g

iη

(
x+ − x−

)
d′ = d
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aB =
√

gηB a′B = aB

bB = −
√

gf

ηB
b′B =

(
x+

x−

)2

bB

cB = −
√

giηB

xBf
c′B =

(
x−

x+

)2

cB (3.40)

dB =

√
gxB

iηB
d′B = dB

In order to calculate the reflection matrix, R, we demand that all commutators of

the reflection matrix with the generators of SU(2|2) vanish. In this case the operators

act on two particle states, so the computation is more involved that in the last case. In

particular, we have to remember that fermionic operators acting on two particle states are

defined as Q = Q1 ⊗ 1 + (−)F ⊗ Q2, where F is the fermionic number of particle state

1. The computation is almost identical to the one performed in [1]. Invariance under the

bosonic generators implies that the R matrix can be written as [1, 12]

R|φa
Bφb

p〉 = A|φ{a
B φ

b}
−p〉 + B|φ[a

Bφ
b]
−p〉 +

1

2
Cǫabǫαβ |ψα

b ψβ
−p〉 (3.41)

R|ψα
Bψβ

p 〉 = D|ψ{α
B ψ

β}
−p〉 + E|ψ[α

B ψ
β]
−p〉 +

1

2
Fǫαβǫab|φa

Bφb
−p〉 (3.42)

R|φa
Bψα

p 〉 = G|ψα
Bφa

−p〉 + H|φa
Bψα

−p〉 (3.43)

R|ψα
Bφa

p〉 = K|ψα
Bφa

−p〉 + L|φa
Bψα

−p〉 (3.44)

where a, b represent bosonic indices, ±̇, and α, β are fermionic indices, ±. The (anti)

symmetrization symbols are defined with a 1
2 normalization factor, i.e. {ab} = ab+ba

2 .

It is understood that the states on the right hand side of these equations are out states

and, therefore, have primed quantum numbers. In particular, they have primed phases, f ′

and f ′
B. 5

Acting with the fermionic generators on both sides we get constraints on A, B, C,

D, E, F , G, H, K, L that determine them completely up to an overall phase. We get:

A = R0
x+(x+ + xB)

x−(x− − xB)
(3.45)

B = R0
2x+x−xB + (x+ − xB)[−2(x+)2 + 2(x−)2 + x+x−]

(x−)2(x− − xB)

C = R0
2ηηB

f

(x− + x+)(x−xB − x+xB − x−x+)

xBx−(x+)2(x− − xB)

D = R0

E = R0
2[(x+)2 − (x−)2][−x+x− + xB(x− − x+ + x−(x+)2)] − xB(x+x−)2(xB − x−)

(x−x+)2xB(x− − xB)

F = R0
2f

ηηB

(x+ − x−)(x+ + x−)(xBx+ − xBx− + x+x−)

(x−)3(x− − xB)

5Note that we are working in the so called non-local representation [12]. One can also reintroduce the

markers Z± in a simple way.
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G = R0
ηB

η

(x+ − x−)(x+ + x−)

(x− − xB)x−

H = R0
(x+)2 − xBx−

x−(x− − xB)

K = R0
[xBx+ + (x−)2]

x−(x− − xB)

L = R0
η

ηB

(x+ + x−)xB

x−(x− − xB)

Notice that the phase f appears explicitly in C and F . We can eliminate f at the cost of

introducing markers, Z±, as explained in [12].

The boundary Yang Baxter equation is satisfied by the exactly the same argument

used by Beisert in [12], as the symmetries and representations are the same as in the bulk.

As in that case, there are two intermediate representations for 3 particle states and each

one contains a state that scatters diagonally.

Note also that the boundary scattering in the full theory is given by taking the product of

two such reflection matrices, one for each SU(2|2) factor. One could also derive a crossing

equation by scattering the identity state (3.26) as we did in the SU(1|2) case.

Note that A
D is a prediction for the ratio of amplitudes of Y Y → Y Y scattering in the

SU(2) sector to ψψ → ψψ in the SU(1|1) sector. In the following section we will test the

ratio A
B and calculate the phase factor at weak coupling.

3.2.1 Boundary bound states

It is interesting to note that the coefficient A has a pole at x− = xB. In the full problem,

once we take the product of the two reflection matrices we expect that the overall phase

factor is such that the scattering in the SU(2) subsector continues to have a single pole

at this position. In fact, this will be explicitly checked at weak coupling in section 4.3.

Thus, we expect to have single pole at all values of the coupling. This pole signals the

presence of a bound state, similar to the ones considered in [37]. Following the same rules

as in [46] we see that this pole is a generated by the Landau diagram in figure 10 that yields

a normalizable wave function. Figure 10 represents an actual boundary bound state in the

s-channel. The incoming fundamental magnon binds to the boundary degree of freedom

to form a BPS bound state corresponding to a double box representation of SU(2|2)2. As

in the bulk case, we can introduce a new parameter x
(2)
B ≡ x+. Once we set x− = xB, we

find that

x
(2)
B +

1

x
(2)
B

= 2
i

g
(3.46)

The energy of the bound state is given by ǫ = g
i

(

x
(2)
B − 1

x
(2)
B

)

, as in (3.38). We can now

consider the boundary scattering of another magnon with this new boundary impurity.

This can be computed by scattering this second magnon, parametrized by x±
2 , off the

bound state made out of the original impurity and the first magnon, parametrized by

x
(2)
B = x+

1 , x− = xB. This scattering is described a the product of the scattering amplitudes

of the second magnon from the first, the reflection matrix, and the scattering of the reflected
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Figure 10: Pole at x− = xB

second magnon with the first. This full amplitude has a pole at x−
2 = x

(2)
B . Thus we can

have a new bound state characterized by x
(3)
B ≡ x+

2 . Proceeding in this fashion we obtain

a structure of bound states very similar to what we had in the bulk [37, 56]. An n particle

bound state is given by xB = x−
1 , x+

1 = x−
2 , x+

i = x−
i+1, x

(n)
B = x+

n−1. Then using the

equations for each of the particles one can see that

x
(n)
B +

1

x
(n)
B

= n
i

g
, ǫB =

g

i

(

x
(n)
B − 1

x
(2)
B

)

=
√

n2 + 4g2 (3.47)

These are in the same representation of the extended SU(2|2)2 superalgebra as the bulk

magnons [38], except, of course, that the central charges are given by the line going from

the center of the disk to the rim of the disk.

4. Results at weak coupling

In this section we present some results obtained from weak coupling calculations in the

gauge theory. We consider the operators OY and OZ described by expressions (2.3)

and (2.4). We study the large J limit, where the chain is infinitely long and we focus

on the physics near each of the boundaries. We study N = 4 super Yang Mills at two

loops, using the results for the dilatation operator obtained in [47] to calculate the reflec-

tion matrices in the SU(2) subsector. Furthermore, we perform some non trivial checks, in

the SU(3) subsector, of the ratios of the matrix elements of the exact matrices discussed

in the previous section. Finally, in appendix A we discuss the integrability of the resulting

Hamiltonian.

4.1 The two loop Hamiltonian at weak coupling in the SU(2) sector

In order to calculate the reflection matrices we first need to calculate the appropriate

Hamiltonian including the boundary contributions. This has been calculated at one loop

in [23] and at two loops in [31]. We review this calculation and discuss an extra term,

relative to [31], that is present at two loops. This term, although subtle, is crucial to make

the spin chain integrable.
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Our starting point is the general expression for the one and two loop dilatation oper-

ator [47] in the SU(2) subsector. This is

D = −2
g2

N
: Tr[Y, Z][Y̆ , Z̆] : −2

g4

N2
: Tr[[Y, Z], Z̆][[Y̆ , Z̆], Z] :

−2
g4

N2
: Tr[[Y, Z], Y̆ ][[Y̆ , Z̆], Y ] : +4

g4

N
: Tr[Y, Z][Y̆ , Z̆] : (4.1)

where X̆ means ∂
∂X .

We can calculate the effective Hamiltonian operating on a SU(2) spin chain from this

operator. The bulk part of this Hamiltonian is [31, 47]

Hbulk =
∑

i

(2g2 − 8g4)(I − Pi,i+1) + 2g4
∑

(I − Pi,i+2) (4.2)

where Pi,j is the permutation operator between sites i and j.

Let us discuss the boundary terms that need to be added when we attach our spin

chain to a giant graviton. As the interaction has a range of two sites we only need to worry

about the first few sites of the chain, assuming a boundary on the left. Let us assume our

spin chain starts as

ǫXN−1
B | X0

︸︷︷︸

0

X1
︸︷︷︸

1

X2
︸︷︷︸

2

. . . (4.3)

where Xi are fields that can take the values Y, Z. We have been schematic and have omitted

indices in this expression. The | separates the giant graviton from the rest of the chain.

From the site 1 onwards we have the bulk Hamiltonian. At site 0, the Hamiltonian

acts differently. To leading order in 1/N , the determinant cannot have a field of the same

flavor next to it [23, 24, 43]. This means that X0 is always different from XB. We also

have to be careful about this when we operate with the Hamiltonian. If X1 or X2 are

equal to XB then the corresponding permutation operator acting on the site 0 will vanish.

With these rules in mind, if we consider the action of D (4.1) on the chain by applying all

derivatives outside the determinant,6 we find that H acts on the first three sites as

Hnaive = (2g2 − 8g4)qXB

1 + 2g4qXB

2 (4.4)

where qXB

i acts as the identity if Xi = XB and as zero if it is not. If this was the whole story

we would reproduce the results of [31]. However, we still need to consider the possibility

of the dilatation operator acting on the determinant and its neighboring sites. It turns out

there is only one term in the dilatation operator (4.1) that contributes to this extra piece.

This term is roughly g4

N2 Tr
(

X̆BX0XBX̆BX̆0XB

)

with the first derivative acting on the

determinant. Naively, this term is suppressed by a factor of N as can be seen from (4.1).

However, since there are N − 1 letters inside the determinant, there are O(N) possible

actions of the derivative. All these subleading terms add up cancelling the 1
N suppression.

This extra term is7

Hdet = 4g4qB
1 (4.5)

6This amounts to truncating Hbulk at the end of the chain.
7This term should also be added to the expressions in [30].
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The final form of the two loop boundary Hamiltonian in the SU(2) sector is:

H = Hbulk + Hnaive + Hdet = (4.6)

= (2g2 − 8g4)
∞∑

i=1

(I − Pi,i+1) + 2g4
∞∑

i=1

(I − Pi,i+2) + (2g2 − 4g4)qXB

1 + 2g4qXB

2

Notice that the chain starts effectively at site 1, as the site 0 is fixed by the boundary.8

This Hamiltonian, with the explicit inclusion of Hdet (4.5), is consistent with integrability.

This is suggested in appendix A by explicitly constructing the perturbative asymptotic

Bethe ansatz solution for the two magnon problem.

We can now use this result to calculate scattering amplitudes for different boundaries

in the SU(2) subsector.

4.2 The SU(1|2) reflection matrix off a det(Y ) boundary

Let us now consider the operators involving an open chain on ending on the operator

det(Y ), corresponding to the Y = 0 giant graviton brane. We focus on the large J limit,

where we have a large number of Zs producing a long open string, and we focus on one

end of the chain at a time. In that case one can compute the boundary reflection matrix.

Let us start considering the operator OY (2.2) that corresponds to the vacuum. Acting

with the Hamiltonian (4.6) we find

HOY (Z) = 0 (4.7)

where we plugged in XB = Y in the expression (4.6). This was expected, since it is a BPS

state the vacuum has zero energy. We see that we have no degree of freedom, as the first

excitations will be massive. If we place an impurity moving with momentum p far away

from the boundary, all boundary terms vanish, and we recover the bulk expression for the

energy

HOY (Yp) =
(

8g2 sin2 p

2
− 32g4 sin4 p

2

)

OY (Yp) (4.8)

for a one particle state with momentum p, OY (Yp); see equation (4.10). The formula for

the energy is just the expansion to second order in g2 of the anomalous part of the magnon

energy

ǫ − 1 =

√

1 + 16g2 sin2 p

2
− 1 ∼ 8g2 sin2 p

2
− 32g4 sin4 p

2
(4.9)

Let us now compute the reflection matrix. We write a wavefunction of the form

OY (Yp) =
∞∑

x=1

Ψ(x)OY (Yx) =
∞∑

x=1

(
e+ipx + Re−ipx

)
OY (Yx) (4.10)

where OY (Yx) is an operator of the form given by equation 2.3 with the impurity placed at

site x. In principle, there can be corrections of order g2 near x ∼ 0, as was discussed for the

8This situation will change when we move to the SU(3) subsector

– 23 –



J
H
E
P
1
1
(
2
0
0
7
)
0
6
3

bulk in [10]. This turns out not to be necessary in our case. If we apply the Hamiltonian

we see that this is an eigenstate of the right energy, provided we set

Ψ(0) = 0 Ψ(−1) + Ψ(1) = 0 (4.11)

where we have analytically continued the expression for the wavefuntion, Ψ(x) = eipx +

Re−ipx, to negative values of x. Remarkably both equations can be satisfied simultaneously

without the inclusion of corrections by setting R = −1. In terms of the reflection matrix

for each SU(1|2) factor (3.23), and recalling the expression for Y , (3.8), we see that

−1 = R = R2
0Le2ip , → R2

0L = −e−2ip (4.12)

up to two loops. We see that the two loop correction vanishes. It would be interesting to

see at what loop order we get the first deviation from this result.

Finally, we notice that there are no poles associated with boundary bound states in

this matrix. This confirms, at weak coupling, our assumption that there are no boundary

degrees of freedom in this theory.

4.2.1 One loop test for the SU(1|2)2 reflection matrix

In this section we will compare the reflection amplitudes of Y , Y and W (W should be

the same as W ) off a boundary that consists of a Y = 0 giant graviton brane. These

calculations were performed at one loop in [23], where they have an expression for the one

loop boundary hamiltonian in the S0(6) sector. In our notation9 the results they obtain

for scattering off a boundary (a det(Y ) boundary) on the left are

RW = e−ip = RW (4.13)

RY = −1 (4.14)

RȲ = −e−2ip (4.15)

Notice the quotients RW

RY
= −e−ip and

RȲ

RY
= e−2ip are the ones predicted by our exact

matrix (3.23), recalling the expressions (3.8) for the impurities. Also, the overall factors

are the same as the ones calculated at two loops in this section.

4.3 The SU(2|2) spectrum and reflection matrix off a det(Z) boundary

Let us now go through a similar calculation for the SU(2|2) reflection matrix, which cor-

responds to the case that we have an open chain ending on a det(Z) operator. In this

case the ground state is non trivial. As we argued before, the letter placed next to the

determinant, det(Z), cannot be a Z. This means that, at the very least, one field gets

trapped in between the vacuum described by a chain of Zs and the D-brane. Our simplest

guess for this operator is OZ(Y, . . .), (2.4), where the dots represents the other boundary

which we are not discussing now. Direct computation shows that this is an eigenstate with

energy

HOZ(Y, . . .) = (2g2 − 2g4)OZ(Y, . . .) (4.16)

9Among other things they define the origin of the chain at site 1 instead of site 0. This introduces some

phases.
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This energy is the contribution from one boundary. In the case of the full chain, we have

a second impurity at the other end and we have to add the corresponding energy. This

energy agrees precisely with the weak coupling expansion of the exact formula (3.38),

ǫB =
√

1 + 4g2 ∼ 1 + 2g2 − 2g4 (4.17)

This computation tests the boundary term in the Hamiltonian (4.6).

Once again, scattering states have the same energy as in the bulk, so the total energy

is

HOZ(Y, Yp, . . .) =
[

(2g2 − 2g4) +
(

8g2 sin2 p

2
− 32g4 sin4 p

2

)]

OZ(Y, Yp, . . .) (4.18)

In appendix B we construct explicitly the wavefunction up to two loops, check this expres-

sion for the energy, and compute the reflection amplitude to two loops. We find

R′ = − 1 − 2eip

1 − 2e−ip
+ 2g2 e−ip(eip − 1)3(eip + 1)(1 − 4eip + ei2p)

(eip − 2)2
(4.19)

This fixes the overall phase R0L in (3.45) at two loops for weak coupling. We would like to

write this expression as a function of x±, xB such that we can make a guess that might be

correct to a few higher orders as in [48]. Moreover, writing the expression this way allows

for the identification of poles in the reflection matrix in a straightforward way. Notice

that the coefficient A in the matrix R (3.45) has the right limit at 1 loop but disagrees

with (4.19) at two loops. We propose an expression that coincides with (4.19) up to two

loops.

R′ = −(x+ + xB)

(x− − xB)

(

x+ + 1
xB

)

(

x− − 1
xB

)
(x− + xB)

(x+ − xB)

(

x− + 1
xB

)

(

x+ − 1
xB

) (4.20)

In checking this it is useful to remember the weak coupling expansions

xB =
i

2g

(

1 +
√

1 + 4g2
)

∼ i

g
+ ig + · · · (4.21)

x± = e±i p

2

(

1 +
√

1 + 16g2 sin2 p
2

)

4g sin p
2

∼ e±i p

2

(
1

g 2 sin p
2

+ 2g sin
p

2
+ · · ·

)

(4.22)

This expression for R′ presents four simple poles. The pole at x− = xB is responsible for

the singularities of the weak coupling expansion (4.19). This is the pole that is already

visible at one loop. This pole gives rise to a bound state in the s-channel and corresponds

to the BPS boundary bound states that we discussed in section 3.2.1. We do not know

if all the other poles of (4.19) survive when we add higher order corrections. It should

be possible to perform an analysis similar to the one in [46], to determine the presence or

absence of the other poles.

We can now also read off the two loop value of R0L in (3.45)

R2
0L =

R′

A2
= −

(
x−

x+

)2
(x− − xB)

(x+ − xB)

(

x+ + 1
xB

)

(

x+ − 1
xB

)
(x− + xB)

(x+ + xB)

(

x− + 1
xB

)

(

x− − 1
xB

) (4.23)
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4.3.1 One loop test for the SU(2|2)2 reflection matrix

We compare our exact results for the reflection matrix, (3.45), with the weak coupling

results, as we did for the SU(1|2)2 case. Unlike the previous case, this calculation is

not available in the literature. We will need to compute the scattering process of a W

approaching a Z = 0 brane with a Y degree of freedom. At one loop the fermions do not

play a role and we can consider the SU(3) sector to be closed. (This can be seen from the

expression of C in the exact solution, which is O(g) while A and B are of order unity).

Therefore, our process is

|YBWp〉 → R′
W |YBW−p〉 + R′

Y |WBY−p〉 (4.24)

The Hamiltonian at one loop for the SU(3) sector can be obtained by restricting the SO(6)

result in [23]. In our notation this is

H = 2g2

(
∞∑

i=0

(I − Pi,i+1) + P0,1q
Z
1

)

(4.25)

This means that when there is Z in the first (1) site it is the same as in the SU(2)

subsector, but the permutation operator does contribute when Y and W occupy the 0 and

1 site as opposed to the SU(2) case. The reason for this is obvious: both Y and W can

appear next to the determinant of Zs. We use the following trial eigenstate:

Ψ =
∞∑

x=1

(
eipx + R′

W e−ipx
)
|YBWx〉 + R′

Y e−ipx|WBYx〉 (4.26)

where |X1
BX2

x〉 is a state with an X1 at the boundary (the site labelled by zero) and an

X2 at position x. In the bulk (x > 1) the eigenvalue equation yields the necessary value of

the energy for both W and Y states.

E = 2g2
(
1 + 2 − eip − e−ip

)
(4.27)

Let us see what happens for the first site

E

(

ψW (1)

ψY (1)

)

=

(

2ψW (1) − ψW (2) − ψY (1)

2ψY (1) − ψY (2) − ψW (1)

)

(4.28)

where ψW = eipx + R′
W e−ipx and ψY = R′

Y e−ipx. Using the bulk equations we get

(

ψW (1)

ψY (1)

)

=

(

ψW (0) − ψY (1)

ψY (0) − ψW (1)

)

(4.29)

Plugging the ansatz for the wave function we get

R′
W =

e2ip − eip + 1

eip − 2
(4.30)

R′
Y =

e2ip − 1

eip − 2
(4.31)
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These values satisfy |R′
Y |2 + |R′

W |2 = 1 as they should to comply with unitarity. Now

we can compare the quotients
R′

W

R′ and
R′

Y

R′ with the expected values from the exact calcu-

lations, (3.45). Here R′ is the value encountered in the SU(2) sector at one loop (4.19).

Namely,

R′ =
2eip − 1

1 − 2e−ip
(4.32)

The resulting quotients are:

R′
W

R′
=

eip + e−ip − 1

2eip − 1
,

R′
Y

R′
=

eip − e−ip

2eip − 1
(4.33)

From the exact result (3.45) we have

R′
W

R′
=

1

2

(

1 +
B

A

)

,
R′

Y

R′
=

1

2

(

1 − B

A

)

(4.34)

Expanding A, B, using the first terms in (4.21) (4.22), we checked that these equations are

true. This is a nontrivial one loop check for the bosonic subsector of the reflection matrix.

A very easy check is that R′
Y + R′

W = R′.

5. Results at strong coupling

In this section, we discuss results obtained in the strong coupling regime from string theory.

As long as one is interested in the leading terms in g, it is possible to calculate scattering

amplitudes by calculating time delays in classical sine Gordon theory [34]. We make use

of this possibility to calculate the overall phase of the reflection matrix at strong coupling

for both the Z = 0 and Y = 0 giant graviton branes. To be more precise, at strong

coupling there are three regimes, depending on how we scale the momentum. We can keep

the momentum fixed and then compute as we mentioned above; this is the giant magnon

regime. We could also scale the momentum as p ∼ 1/g and this corresponds to the near

plane wave limit. Finally we can set p ∼ 1/
√

g, see [49]. For the case of bulk scattering

it is possible to write a formula which captures the leading order result both in the plane

wave and giant magnon regimes [7]. Here we will focus on the giant magnon region. As

we briefly discussed in section 3.1.3, the result in the plane wave region is trivial. Some

results in the near plane wave region were obtained in [21].

5.1 Boundary conditions in the sine Gordon theory

According to the work of Pohlmeyer [50] it is possible to map the problem of a string

propagating on R×S2 into the classical sine Gordon model, see also [51]. This connection

was used in [34] to calculate the strong coupling limit of the bulk scattering phase of string

theory on AdS5 × S5. We will do the same here.

We use string worldsheet coordinates in which ṫ = 1. Then, the sine Gordon field,

φ(x, t), is related to the unit vector η describing the S2 as

cos 2φ = η̇
2 − η

′2 (5.1)
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where

η
2 = 1 , η̇

2 + η
′2 = 1 , η̇ · η′ = 0 (5.2)

We can consider simple cases leading to different boundary conditions for the sine Gordon

theory.

1. Scattering off a Z = 0 giant graviton brane

2. Scattering off a Y = 0 giant graviton brane where we chose the S2 within brane, e.g.

the S2 given by |Z|2 + (Φ1)
2 = 1

3. Scattering off a Y = 0 giant graviton brane where we chose the S2 transverse to the

brane, e.g. the S2 given by |Z|2 + (Φ3)
2 = 1

Recall that Z = Φ5 + iΦ6, Y = Φ3 + iΦ4.

In the first case the boundary is fixed at the center of the Z plane. This means that the

S2 boundary condition is η̇|Boundary = 0. Therefore, using equations (5.1) and (5.2), we find

the Dirichlet boundary condition φ|Boundary = π
2 . This type of boundary conditions were

discussed for the classical sine Gordon theory in [52] and the time delay was calculated.

Note that φ = π
2 corresponds to the maximum of the sine Gordon potential. This implies

that the field has to move from the maximum to the minimum and this leads to some

energy that is localized near the boundary. This corresponds to the boundary degree of

freedom, or boundary impurity, that we discussed above.

The second case represents a string that is entirely contained inside the D-brane that

it is attached to. Therefore, the string end point (the one ending on the D-brane) can

move freely on the S2, thus η
′ = 0 and this leads to another Dirichlet boundary condition

for the sine Gordon field φ|Boundary = 0. In this case the field is at the minimum of the

potential and we have nothing localized at the boundary.

Finally, in the third case the endpoint of the string, which has to lie both on the D-

brane and inside the S2, has to be on the rim of the disk |z| = 1, which is the only region

common to both. One can then show that this leads to φ′|boundary = 0.

In this fashion, we see how different physical configurations in AdS5 × S5 lead to

different boundary problems for the sine Gordon theory. Interestingly enough, all the

boundary conditions that were discussed belong to the special class that make the boundary

field theory integrable [13]. Incidentally, the string theory setup we are studying was shown

to be integrable at large g in [28]. It would be interesting to see if other integrable boundary

conditions in the sine Gordon model map to other configurations in the string theory.

We should mention that this description that uses the sine Gordon theory is only an

approximation (valid in the classical limit). It is not capturing the fact that there are

collective coordinates characterizing the magnon. These arise because the magnon has

an S3 worth of possible orientations inside the S5. (In addition, we have fermion zero

modes [53]). As we quantize these coordinates we get all the BPS bound states with

various values of the angular momentum charge n [37, 38]. In particular, the fundamental

impurities, such as the fields Y, X, etc, have wavefunctions that are spread over this S3.

Thus, when we talked about solutions that were localized within a given S2, we were making
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an approximation where we neglected this motion. One could get a better approximation

by considering the solutions in [54], which can be used to describe the classical limit of the

scattering of BPS bound states [37] with angular momentum n ∼ O(g) from the boundary.

In the case of the Z = 0 brane, where we have a boundary impurity, we construct the

solution as follows. Con consider a soliton of the bulk theory with momentum p = π

that is at rest at the origin. This is a solution that obeys the boundary conditions of the

boundary theory. Its energy is simply half of the energy of the original soliton. We can

similarly consider the generalizations with angular momentum discussed in [38, 54]. In

that case both the angular momentum and energy are half of what they were in the bulk.

However, in the boundary case, we want to quantize the angular momentum so that it is

an integer after dividing by half. Thus we get a formula for the energies that has the form

ǫB =
1

2

√

(2n)2 + 16g2 =
√

n2 + 4g2 (5.3)

where n is an integer. This is in agreement with the exact results (3.47).

5.2 Time delays and scattering phases

Let us consider first the case where we have a Y = 0 giant graviton brane. It is convenient

to think about the problem by using a “method of images” where the incoming soliton

scatters an antisoliton or a soliton coming from the other side of the boundary, depending

on the boundary conditions. From our experience with the sine Gordon model and the bulk

calculations in [34], we know the result will be independent of whether the image state is

a soliton or an antisoliton. Therefore, we don’t need to specify this in our calculations.

When we translate between the sine-Gordon results and the results computed in the

conventions that are more natural at weak coupling we need to be careful about the fact

that these two different conventions differ in the definition of the spatial coordinate. This

was explained in more detail in [34, 55, 56]. In fact, we can work in conventions that

coincide with the gauge theory conventions and notice that the classical boundary scattering

amplitude has a simple relation to the bulk scattering amplitude once we note that the

boundary scattering amplitude can be computed by the “method of images”. Let us

consider the case where we scatter from a right boundary.10

For a Y = 0 brane, we have two solitons, one with momentum p1 = p and another

with momentum p2 = −p. The bulk scattering phase is related to the time delays

∆T12 =
dp1

dǫ1
∂p1δ(p1, p2) , ∆T21 =

dp2

dǫ2
∂p2δ(p1, p2) (5.4)

where δ(p1, p2) is the bulk scattering phase computed in [34]

δ(p1, p2) = −4g
(

cos
p1

2
− cos

p2

2

)

log

[

sin2 p1−p2

4

sin2 p1+p2

4

]

(5.5)

where sign(sin pi) > 0. For p2 = −p < 0 we should set p2 = 2π−p in this formula, and this

is what we will always mean by −p. In the case that p = p1 = −p2 we find that the two

10We can obtain the result for left boundaries by a parity transformation RL(p) = RR(−p).
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time delays are equal to each other and to the time delay for scattering from the boundary

∆T12 = ∆T21 = ∆TB(p). Thus we conclude that the classical (right) boundary scattering

phase, RR = eiδB,R , is the solution to

dp

dǫ
∂pδB,R(p) = ∆TB(p) =

1

2
(∆T12 + ∆T21) =

=
1

2

(
dp1

dǫ1
∂p1δ(p1, p2) +

dp2

dǫ2
∂p2δ(p1, p2)

)∣
∣
∣
∣
p1=−p2=p

(5.6)

A solution to this equation is then

δB,R(p) =
1

2
δ(p,−p) = −8g cos

p

2
log cos

p

2
(5.7)

where δ is (5.5). This describes right-boundary scattering. Note that we get the same

answer regardless of the state of the impurity, since the matrix structure of the reflection

matrix (3.22) is subleading at large g. This also means that this an actual calculation of

the overall phase factor R2
0R at strong coupling and to leading order.

We can check that this result obeys the classical limit of the crossing equation (3.30)

δB,R(p) + δB,R(p̄) = −δ(p,−p̄) + O(1) (5.8)

where the O(1) terms are order one in the 1/g expansion. Notice that in order to get the

results for p̄, we should set p → −p in (5.5) (5.7) and, as we mentioned before, to get the

results for −p we should set p → 2π − p in (5.5) (5.7).

This result is valid in the giant magnon regime. We remind the reader that reflection

becomes trivial in the plane wave region, as magnons become noninteracting. In that case,

we get Dirichlet boundary conditions for the fields Y, Y and Neumann for W, W . This

implies that R2
0R = −1 in the plane wave regime.

In a similar way we can compute the classical limit of the boundary scattering for the

Z = 0 brane. In this case we have a boundary impurity. Using the “method of images”

we can represent the boundary impurity as a third soliton, with momentum p = π that

is sitting at the boundary. This type of solutions was obtained explicitly for the sine

Gordon model in [52]. In order to compute right boundary scattering we consider a bulk

configuration with three solitons with p1 = p, p2 = −p and p3 = π. Then the time delay is

∆T (p) = ∆T12 + ∆T13 =
1

2
(∆T12 + ∆T21) + ∆T13 (5.9)

Writing this as in (5.6) we find the large coupling expression for the phase in (3.45),

R2
0,R = eiδZ

B,R ,

δZ
B,R(p) =

1

2
δ(p,−p) + δ(p, π) = −4g cos

p

2
log

[

cos2
p

2

(1 − sin p
2)

(1 + sin p
2)

]

(5.10)

where

δ(p, π) = −4g cos
p

2
log

[
1 − sin p

2

1 + sin p
2

]

(5.11)

The classical limit of the crossing symmetry equation is expected to be similar and it

would still be obeyed since (5.11) is odd under p → −p (which is what we should to do to

cross p → p̄).
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6. Conclusions and discussion

6.1 Summary of results

In this article we considered some D-brane configurations in AdS5 ×S5 and considered the

worldsheet theory of an open string ending on the D-brane. We focused on the D-branes

that correspond to maximal giant gravitons. In the dual field theory, these D-branes

correspond to determinant operators of the form det(Y ), det(Z), where Y, Z are two

complex combinations of the scalar fields in N = 4 super Yang Mills. We considered

an open string attached to this operator with a large value of J , where J is one of the

generators of SO(6). In the dual field theory this corresponds to attaching a long string of

Zs to the determinant operator. This can be viewed as a spin chain defined on an interval.

We then considered impurities propagating on this chain of Zs. The symmetries of the

problem determine completely the single impurity reflection matrix up to an overall phase.

These reflection matrices are asymptotic, as in the bulk [10]. Namely, we need to go far

away from the boundary to measure it. Thus, the strict mathematical definition of the

reflection matrix requires J = ∞.

We considered two cases. First the case where the determinant operator was det(Y ). In

this case the boundary breaks the bulk symmetry group to an SU(1|2)2 subgroup. Yet, this

symmetry is powerful enough to determine the matrix structure of the reflection matrix.

In fact, in a natural basis, the reflection matrix is diagonal.

We then considered the case where we have a det(Z) operator. In this case an impurity

gets trapped between the string of Zs describing the open string ground state and the

determinant operator. This impurity acts as a boundary degree of freedom. This problem

respects the full extended SU(2|2)2 symmetry that we have on the bulk of a chain of Zs,

or the bulk of the string in light cone gauge [8]. The boundary impurity transforms in the

fundamental representation of the extended SU(2|2)2 algebra and has a (complex) central

charge with fixed modulus and a phase that is determined by the momenta of the other

particles. This is very similar to the structure we have in the bulk of the string. The

algebra determines the energy of the boundary impurity. In this case, the reflection matrix

acts on the boundary degree of freedom. The resulting matrix is rather similar to the

one describing the bulk scattering of two impurities [1]. Also, the bulk particle can form

BPS bound states with the boundary degrees of freedom. Thus, the spectrum of boundary

degrees of freedom includes an index n which characterizes the total number of impurities

forming the bound state.

Both of reflection matrices obey the boundary Yang Baxter equation, which is a requi-

site for integrability. In the first case, we derived explicitly the form of the crossing equation

by considering the scattering of a particle/hole pair and demanding that the corresponding

reflection amplitude is trivial. This derivation could be extended to the second case in a

straightforward way.

We then performed computations in the weak coupling regime. Here we checked the

integrability of the system up to two loops. We resolved the problems raised in [31] by

noticing that there is an extra boundary contribution to the spin chain Hamiltonian. The

results we obtain at two loops are consistent with integrability, in the sense that the
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asymptotic Bethe ansatz for two particles works properly. Nevertheless, we have not proven

the full integrability of the system at two loops. We also computed the undetermined phase

factor in the reflection matrix up to two loops in the weak coupling expansion. In addition,

we checked that the matrix structure obtained by the symmetry arguments was consistent

with the explicit weak coupling results.

We also computed the strong coupling limit of the reflection phase. At strong coupling

there are two perturbative regimes, the near plane wave regime and the giant magnon

regime, depending on the momentum of the impurity. We computed the leading order

result for the scattering amplitude in the giant magnon regime. The computation can be

carried out in a simple way by using a “method of images”, where we view the problem

with a boundary in terms of a problem on the full line with the proper symmetry under

reflection.11 This gives the boundary scattering phase in terms of the bulk scattering phase.

Note that our computations of the matrix structure of the reflection matrix are valid

also for other systems where we have SU(2|2) symmetry. One such system is the plane wave

matrix model [9], where one can study configurations analogous to the ones considered here,

even though this particular system appears not to be integrable [57].

6.2 Problems for the future

We would now like to point out to some open directions that seem worth exploring further.

The most obvious open problem is to find the overall phase factor by solving the

crossing equation, as was done for the bulk in [3].

Once we know the phase for the two cases, then, one can check that we get a consistent

result by starting with the det(Y ) brane (or Y = 0 giant graviton brane) and fill in the

vacuum by adding Y impurities until all we have are two Zs that get trapped at the ends.

This should correctly reproduce the energy of the ground state for an open string on a

det(Z) brane (or Z = 0 giant graviton brane) containing one impurity at each end. This

gives a consistency check. Alternatively, if we assume it is true, this could give us a method

for computing the reflection phase for one case once we know it for the other case.

Once one has found the overall phase, then one can write Bethe equations that deter-

mine the energy of the system. These equations will describe only the large J limit of the

system. To go to the limit of small J one will have to use some more clever methods, which

hopefully rely only on the reflection matrix that we are considering here. Some finite J

corrections were computed in [58], for the closed string case.

It seems possible to study other D-branes in the bulk. For example, D-branes that are

associated to adding flavors to the theory or D-branes that correspond to adding operators

with various codimensions in the boundary theory. It seems that many of these cases could

be solved by the techniques in this paper, since they appear to have enough symmetry to

completely constrain the reflection matrix.

Another interesting case to analyze is the situation where we have local operators on

a half BPS Wilson line [17]. When we consider operators with large J we get an open spin

11This method is useful for the classical theory but it is not appropriate for the full quantum theory.
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Figure 11: (a) Open string configuration with very large J containing three separated magnons

which ends on a non-maximal giant graviton. In (b) we isolated one of the boundary impurities.

Note that the length of the boundary impurity line depends on the point along the circle where it

ends.

chain. The boundary conditions seem to preserve a diagonal SU(2|2) subgroup. This is

likely to be enough to fix the reflection matrix completely.

It seems that one could extend our computations to the case of non-maximal giants,

which was considered in [24]. We again preserve the full extended SU(2|2)2 symmetry,

but the boundary impurity has a central charge whose absolute value also depends on its

phase, see figure 11. If we are dealing with a semi-infinite chain, then we could compute

the matrix structure of the reflection amplitude with the methods of this paper. That

computation does not rely on integrability. It remains to be seen whether the system is

integrable or not in this case.
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A. Integrability at two loops

It was pointed out in [31] that the Bethe ansatz seems to fail at two loops for the problem

just studied. We will now show that the problems raised disappear once we consider the

correct Hamiltonian (4.6). In particular, the problem was found when one tried to construct

a two particle state using the original scattering data.

We will consider a wave function of the form Ψ(x, y) = Ψ0(x, y)+ g2|x−y|Υ(x, y) where

we will only be concerned with corrections of order g2 to the standard Bethe ansatz wave

function Ψ0(x, y). This is the asymptotic Bethe ansatz discussed in [10]. Our state is

OY (Yp1Yp2) =
∞∑

0<x<y

Ψ(x, y)OY (YxYy) (A.1)
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The equations we have to satisfy in the bulk are

EΨ(x, y) = (2g2−8g4)(4Ψ(x, y)−Ψ(x − 1, y)−Ψ(x+1, y)−Ψ(x, y−1)−Ψ(x, y+1))

+2g4 (4Ψ(x, y) − Ψ(x − 2, y)

− Ψ(x + 2, y) − Ψ(x, y − 2) − Ψ(x, y + 2)) for 2 < x < y − 2 (A.2)

EΨ(x, x + 2) = (2g2 − 8g4) (4Ψ(x, x + 2) − Ψ(x − 1, x + 2) − Ψ(x + 1, x + 2)

−Ψ(x, x + 1) − Ψ(x, x + 3)) + 2g4 (2Ψ(x, x + 2) − Ψ(x − 2, x + 2)

−Ψ(x, x + 4)) for 2 < x (A.3)

EΨ(x, x + 1) = (2g2 − 8g4) (2Ψ(x, x + 1) − Ψ(x − 1, x + 1) − Ψ(x, x + 2))

+2g4 (4Ψ(x, x + 1) − Ψ(x − 2, x + 1)

− Ψ(x + 1, x + 2) − Ψ(x − 1, x) − Ψ(x, x + 3)) for 2 < x (A.4)

where E is the sum of the one particle energies. These equations specify Υ(x, y) completely,

as well as the bulk scattering matrix [10, 6]. In order to obtain information about the

reflection matrix we need to check the eigenvalue equation for sites close to the boundary.

If we pick sites of the form (2, x) our equations are:

EΨ(2, x) = (2g2 − 8g4) (4Ψ(2, x) − Ψ(1, x) − Ψ(3, x) − Ψ(2, x − 1) − Ψ(2, x + 1))

+2g4 (3Ψ(2, x) − Ψ(4, x)

− Ψ(2, x − 2) − Ψ(2, x + 2)) + 2g4Ψ(2, x) for 4 < x (A.5)

EΨ(2, 4) = (2g2 − 8g4) (4Ψ(2, 4) − Ψ(1, 4) − Ψ(3, 4) − Ψ(2, 3) − Ψ(2, 5))

+2g4 (Ψ(2, 4) − Ψ(2, 6)) + 2g4Ψ(2, 4) (A.6)

EΨ(2, 3) = (2g2 − 8g4) (2Ψ(2, 3) − Ψ(1, 3) − Ψ(2, 4))

+2g4 (3Ψ(2, 3) − Ψ(2, 5) − Ψ(3, 4) − Ψ(1, 2)) + 2g4Ψ(2, 3) (A.7)

If we use the original equations, these just imply Ψ(0, x) = Ψ0(0, x) = 0 for x > 2. These

are the analogous equations to Ψ(0) = 0 in the single particle case and determine the one

particle reflection matrix to be consistent with the Bethe ansatz.

We still have to consider the sites (1,x). These can’t introduce any more constraints,

as our function is already fully determined. The resulting equations are:

EΨ(1, x) = (2g2 − 8g4) (3Ψ(1, x) − Ψ(2, x) − Ψ(1, x + 1) − Ψ(1, x − 1))

+2g4 (3Ψ(1, x) − Ψ(3, x) − Ψ(1, x − 2) − Ψ(1, x + 2))

+(2g2 − 4g4)Ψ(1, x) for 3 < x (A.8)

EΨ(1, 3) = (2g2 − 8g4) (3Ψ(1, 3) − Ψ(2, 3) − Ψ(1, 4) − Ψ(1, 2))

+2g4 (Ψ(1, 3) − Ψ(1, 5)) + (2g2 − 4g4)Ψ(1, 3) (A.9)

EΨ(1, 2) = (2g2 − 8g4) (Ψ(1, 2) − Ψ(1, 3)))

+2g4 (2Ψ(1, 2) − Ψ(1, 4) − Ψ(2, 3)) + (2g2 − 2g4)Ψ(1, 2) (A.10)

Making use of the bulk equations the first of these expressions yields Ψ(−1, x) + Ψ(1, x) =

Ψ0(−1, x) + Ψ0(1, x) = 0 for x > 3. These are the analog of Ψ(1) + Ψ(−1) = 0 and impose
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no further constraints, as our wave function satisfies this identity. The second equation

gives the same result for x = 3. The last of these equations is the one that presented a

conflict in [31]. In our case this equation can be written (to order g4) as

2g4 (Ψ0(1, 2) + Ψ0(−1, 2)) + (2g2 − 8g4)Ψ0(0, 2) + 2g4Ψ0(0, 1) = 0 (A.11)

This is satisfied by our Bethe ansatz as Ψ0(1, 2)+Ψ0(−1, 2) = 0, Ψ0(0, 2) = 0 and Ψ0(0, 1) =

0. This shows that the two particle problem can be solved by the asymptotic Bethe ansatz

technique, suggesting integrability.

B. Computation of the SU(2|2) reflection matrix at two loops

The wave function for a one particle state scattering of the boundary should satisfy:

EΨ(x) = (2g2 − 8g4)(2Ψ(x) − Ψ(x + 1) − Ψ(x − 1))

+2g4(2Ψ(x) − Ψ(x + 2) − Ψ(x − 2))

+(2g2 − 2g4)Ψ(x) for x > 2 (B.1)

for the trial wave function Ψ(x) = Ψ0(x)+g2δx,1Υ. The g2 correction is just an exponential

tail attached to the boundary that accounts for the interactions at two loops. Further

corrections are higher order in g2. Ψ0(x) is just the reflecting wave solution Ψ0(x) =

eipx + R′e−ipx, where R′ has, in principle, g2 corrections to the 1 loop result. From this

expression we check that the energy of this state is indeed (4.18).

The equation that determines Υ comes from the coefficient of the Schrodinger equation

for site 2. Namely

EΨ(2) = (2g2 − 8g4)(2Ψ(2) − Ψ(3) − Ψ0(1)) − 2g4Υ

+2g4(Ψ(2) − Ψ(4)) + (2g2 − 4g4)Ψ(2) (B.2)

Using the bulk equation (B.1) we get

Υ = Ψ(0) − 2Ψ(2) (B.3)

The equation at site 1 determines the reflection amplitude. This is

EΨ0(1)+2g4(3−eip−e−ip)Υ = (2g2−8g4)(Ψ0(1)−Ψ(2))+2g4(Ψ0(1)−Ψ(3))

+2g4Υ + 2g4Ψ0(1) (B.4)

where 2g2(3 − eip − e−ip) is the one loop energy extracted from (4.18). Using the bulk

equation we get

2g4(2−eip−e−ip)Υ = (10g4−4g2)Ψ0(1)+(2g2−8g4)Ψ0(0)+2g4Ψ0(−1) (B.5)

Plugging in for Υ and the wave function we get

2g4(2−eip−e−ip)−4g4(2ei2p−ei3p−eip)−(10g4−4g2)eip−(2g2−8g4)−2g4e−ip = (B.6)

−R′[2g4(2−eip−e−ip)−4g4(2−i2p−e−ip−e−i3p)−(10g4−4g2)e−ip−(2g2−8g4)−2g4eip]
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This in turn implies the weak coupling expansion

R′ = − 1 − 2eip

1 − 2e−ip
+ 2g2 e−ip(eip − 1)3(eip + 1)(1 − 4eip + ei2p)

(eip − 2)2
(B.7)

This is the result (4.19).
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